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Confined chaotic behavior in collective motion for populations
of globally coupled chaotic elements
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The Lyapunov exponent for collective motion is defined in order to characterize chaotic properties of
collective motion for large populations of chaotic elements. Numerical computations for this quantity suggest
that such collective motion is always chaotic, whenever it appears. Chaotic behavior of collective motion is
found to be confined within a small scale, whose size is estimated using the value of the Lyapunov exponent.
Finally, we conjecture why the collective motion appears low dimensional despite the actual high dimension-
ality of the dynamics[S1063-651X99)06802-9

PACS numbdps): 05.45—a, 05.90+m

[. INTRODUCTION lated to the value of the Lyapunov exponent. Finally, on the
basis of our numerical results, we conjecture an answer to
Systems consisting of large populations of interacting dythe following question: Why does the collective motion ap-
namical elements are widely distributed in nature, from comPear low dimensional despite the actual high dimensionality
munities of ants to biological cell assemblies and neural net9f the dynamics?
works. M.apy suph populations are s'imilar in the respectthat |, \ioDEL: GLOBALLY COUPLED TENT MAPS
they exhibit various kinds of collective behavior. One pos-
sible approach to the mathematical study of such collective As model systems, we have chosen globally coupled tent
behavior is to concentrate on certain idealized models sucfaps, because these systems are particularly well suited for
as interacting limit cycles and chaotic maps. An abundancéetailed numerical analysis: We can deal with an ideal limit
of literature has been devoted to the study of these modeff infinitely large population. _
[1-6]. It was suggested in some foregoing stud@s8] that Globally coupled mapg§GCM) are given by an assembly
a population of this type as a whole exhibits low-dimensionaf N élements whose behavior is determinedibydentical
behavior. This seems to be true even when the individua"@PS With all-to-all coupling. The individual elements are

elements appear to be mutually uncorrelated, a situation iﬂ“e” under the influence of a common internal field which

which the population could only be regarded as a dynamicarlr.1ay be_,- referred to as a mean figHl. We assuLne that a
system of extremely high dimension. It still remains unclearSlngle |solat_ed elemgnt evol\_/es according 1—f_(Xn), .
' - wheren designates discrete time steps. Under the interaction

whether such collective behavior could be understood 'Qhrough the mean fielth.  theith element is then assumed
terms of low-dimensional dynamical systems. to evolve as n’

In globally coupled tent maps, collective motion has been ' _
understood partly from a macroscopic viewpdjft1Q]. In Xf{ll=f(xﬂ>)+Khn, (D)
these studies, the collective motion was discussed only with ) ) . ,
regard to its size, without consideration of its detailed strucWWhereK is the coupling strength. In.thls paper, we consider
ture. Some beautiful relations regarding the macroscopif:he situation in whiclf is a tent map:
properties of the collective motion were explored and a -
phase diagram was proposed. These results, however, do not f(X)=—alX|+ — (2
represent progress toward an understanding of collective mo-
tion in terms of low-dimensional dynamical systems. In thisand the mean fielth, is defined as
paper, we first focus on the dynamical properties of collec- N
tive motion. We define the Lyapunov exponent characteriz- 1 -
ing thi ive mot ial relation involv- hy=g2, fOX). )
g this collective motion and then a special relation involv N’ n
ing this quantity is found. This relation suggests that the
collective motion is always chaotic, whenever it appearsThus, our system is characterized by the two parameters
Furthermore, chaotic behavior in the collective motion isand K in addition to the total number of elemeris Each
found to be confined within a small scale whose size is retent map has a band-splitting pot 2 and we thus stipu-
late thata satisfies\2<a<2. It is thereby ensured that the
population will never split into subpopulations. If the system
*Present address: Department of Mathematical Science, IbarakizeN is finite, this finiteness becomes the source of fluctua-
University, Mito, Ibaraki 310-8512, Japan. tions of the mean field. Such an effect may obscure pure
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collective motion. Thus we work with the limit of lardé. In (a) (b)
fact, we confirmed that finite size effects can be regarded a:
noise acting on the pure collective motion. Fé# o, the

population dynamics of GCM can be described by the = nd
Frobenius-Perron equatigl] for the distributionp(X): = &
= — ry — ! ! 10-10
Pn+1(X)= | S[X=F(X")=Khy]p(X)dX",  (4) L
hn
hnzf f(X")pp(X")dX'. (5) FIG. 1. Two types of collective motion a=gs [defined by

—log,(2—a)=4] for the return map oh,,. (a) ForK=0.1, we find

a torus representing quasiperiodic motid). For K=1.0, the re-
Wrn map displays more complicated toruslike motion, possibly ac-
companied by fine structure.

We worked out a numerical scheme for the exact integratio
of Egs.(4) and(5) whose precision is limited only by round-
off errors[12]. Numerical results in this paper were obtained
using only a single initial distribution, uniform over the in-

terval [fof(0):f(0)]. cally result in more complicated collective behavior over all

values ofa.

In the case of smak, the collective motion appears qua-
. BRIEF REVIEW OF PREVIOUS STUDIES siperiodic. Despite the familiar appearance of this collective
. . . ._motion, we should discuss carefully the nature of these dy-
We review here several results for collective motion in . o ; : ;

. ) namics, because the system has an infinitely high dimension.
globally coupled tent maps. Previously, this system was noﬁ_h haofi h duall
reported to show nontrivial behavior of, in contrast with he chaotic structure on the torus seems to grow gradually,

without an indication of bifurcation from quasiperiodic to the

\?vlgt)kilg ;ﬁ;ptliinl0%2“;}3?:&51?; 2”?4)?;3%%] chaotic behavior. It may be the case that the structure on the
y y y ds- ', torus persists as long as there is a nonvanishing interaction.

and Suggeﬂed that the size of the fI_uctuatlonlan‘s scaled In following sections, we focus on the chaotic properties of
as expt-K™9). Contrary to the previous numerical SUQGeS-iha collective motion

tions, their conclusion implied that the system would exhibit

nontrivial behavior even in vanishingly small valueskofin

order to confirm it, more precise calculation was required. V. EXPONENTIAL GROWTH OF DISTURBANCES
Morita [12] reported a good numerical scheme for integra-
tion of Egs.(4) and(5). Especially in the case of the globally col
coupled tent maps, the integration becomes exact, and th
precision is limited only by round-off errors. Using a similar
scheme, Nakagawa and Komaf{@] found that the size of
the collective motion is scaled as exg{ 1) at special pa-

In order to characterize the dynamical properties of the
lective motion, we wish to define a value similar to the
q_r)‘/apunov exponent to characterize the collective motion.
We note that it is unfeasible to calculate conventional
Lyapunov exponents based on the phase-space structure of
) M . the system, because our system is of an infinitely high di-
rameter values .Oa whlch.the'y called “golden values.” Al- mension. However, what we wish to concentrate on is not
though the scaling form is different from that of Ershov andthe phase-space structure but the dynamical properties of the
tollective motion. Hence we attempt to define a quantity

in vanishingly small values oK. They also reported that & ginjjar 1o the Lyapunov exponent to describe the dynamics
phase diagram for the collective motion resembles that of th f the collective motion

Arnold tongues, where each tongue is connected with the \yo sirst add a small disturbance to the distributjgiiX)
golden values of. Another analytical approach to the col- at time stepn. The mean fielch, is changed td,]gd) as a

lective motion was introduced by Chawanya and Morita : : .
[10]. Through the investigation of the stability for the fixed '[Srsk;g[d ;Zzndflif;el(;esnce between the disturbed and nondis-

point of h,, their theory shed light on the bifurcation of the
collective motion. Their results were almost consistent with
the numerical conclusion if®]. Thus collective behavior for
the globally coupled tent maps is now fairly explored. How- . ) o
ever, the dynamical nature of the collective motion is stilldepends orl, the time lapsed since the application of the
open, and thiss just the theme of present paper. disturbance. Without an interactiotK €0) among the ele-
ments in the population, the distributigii®,(X) gradually
approaches that of the nondisturbed cage (X). This is
because the two distributions should realize the same invari-
ant measure of a single tent map. Thijs-0 asl becomes

Collective motion can be observed by studying the dy-large. WhenK #0, collective motion generally occurs. We
namics of the order paramethy, given by Eq.(5). Figures expect that its dynamical properties can be represented by
1(a) and Xb) are return maps for this order parameter. Thereghe behavior ofs, . If the collective motion is completely
we see that the fluctuations bf, undergo quasiperiodic mo- quasiperiodic, the differencg will remain on the same or-
tion for smallK, but for largerK they display more compli- der asd,, while, if it is chaotic, s, will grow exponentially
cated motion. Roughly speaking, larger valuekofieneri-  with the increase of.

&= —hnl, (6)

IV. GROWTH OF COMPLEXITY
IN COLLECTIVE MOTION
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FIG. 2. Exponential growth of the differenc& between the
order parameters(®), andh,,,. The vertical scale is logarithmic.
Herea=gs [—logy(2—a)=4], while K=0.6, 0.8, and 1.0. All
points represent sample averages of 10 different initial distributions (b)

(d) . - f _ — 30 T T T T
py’(X) with a fixed differencedy=10""".

" ° 0.03 |- .

In numerical experimentsg, is estimated for one set of 0.02 _&‘ |
parametersd,K) as follows: The valu¢h®,—h,, | is cal- L f"i 1
culated from various initial distributions gf{®(X) with a 0.01 § g ) ]
fixed small differences,=|h{?—h,|. The sample average £ i%%i A~
over variough{®, —h, | calculated in this way gives, . In 0
our computations, this average was calculated from either 10 2 3 4 5 6
or 100 initial disturbed distributions. We point out here that m
. .. (d) _ .
22}';{2‘@' ghn-kl hn.i| actually depends ohin a manner FIG. 3. Hilly structure as a function ofi for K=1.0 (+) and
I .

. . . 0.5 (X). Herem=—log,(2—a). (8 mvs Lyapunov exponent.
In Fig. 2, we display examples for the exponential growth, e inset, the same data are displayed on logarithmic scales for
of the differences; between the mean fields. The initial dif- poth axes. The dotted line indicatess m~2. (b) mvs amplituder

ferenced, is fixed at as small as I6°. The differenced;  of collective motion. There are several hills and valleys whose lo-
exhibits a clear dependence on the time ste grows cations seem to correspond to those(@ Some of the golden
exponentially and finally saturates near a certain scale. It igalues ofa coincide with integer values ah while some of the
surprising that the exponential growth &fis observed for a silver values coincide with the minimum points of valleysFof
considerably large interval df It is therefore possible to

define the exponemt which characterizes the exponential stance\ =0.17 whenK =1.0). This implies that the dynam-
growth of §. The exponentx corresponds to the initial ics of the collective motion have different nature from that of
slope in Fig. 2. For values dfat which 8, displays exponen- the individual elements.

tial growth, we can defind according to

VI. HILLY STRUCTURE OF THE LYAPUNOV
) EXPONENT

@) Figure 3 shows the Lyapunov exponenfor the collec-
tive motion as functions o& [or, more precisely, as func-
tions of m= —log,(2—a)] at fixed values oK. Here, hilly

This exponent was found to be independent of the initialstructure is displayed by the Lyapunov expongnias seen

disturbance of the distribution for sufficiently small values of in Fig. 3(a). For comparison, we display the hilly structure

oo and sufficiently large values df Hereafter, we call the corresponding tamacroscopic propertie®f the collective

exponent the Lyapunov exponent for the collective motion motion in Fig. 3b). These macroscopic properties are repre-

In Fig. 2 we display three examples @f, where the sented by the amplitud€e of the collective motion,

values ofK are 0.6, 0.8, and 1.0 while the valueaifs fixed

according to—log, (2—a)=4. Larger values oK result in F={(h,—(h,))?). (8)

larger values oh. The collective motion is concluded to be

of a chaotic nature in every case of Fig. 2. If we were toHere( ) represents a long time average. It is worth noting

calculate conventional Lyapunov exponents based on thghat the peaks and valleys of these two sets of hilly structure

phase-space structure of this system, a maximal exponeseem to be located at the same valuea. dor further detail
with a value close to Im, the Lyapunov exponent for a concerning the hilly structure d¥, see[9]. Two special se-
single tent map, would be obtained. We note that the value ofies of parameter values @ the “golden” and ‘“silver”

\ is generally smaller than la. In the case of Fig. 2, lma  values(see the following sections for their definitiprare

=0.48, which is larger than the values found for(for in-  the key to understanding the hilly structure. Briefly, the
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K FIG. 5. Decay of the Lyapunov exponertfor the collective
motion near a silver valus;=1.8137 ... . HereAa=a-—s;. K

FIG. 4. Scaling relation of the Lyapunov exponentfor the
collective motion withK. Here\ vs K is shown for three golden
valuesg,, p=3-5.a=g,isequalto—log, (2—a)=p—1. The
dotted line indicatea =K?.

=0.7.(a) —In|Aa| vs\ with logarithmic scales for both axes. The
dotted line corresponds to~(—InjAal) =22 (b) |Aa| vs A with
normal scales for both axes. The region wherelecays to 0 is
found to be very narrow when is plotted in this way.

golden values of the parameteare situated in the middle of the Lvapunov exponen for the collective motion behaves
each hill and the silver values are at the minimum points in yap P

the valleys. The same situation is found in the case of th
Lyapunov exponenk for the collective motion. K2

We now concentrate on the differences between these two A~ —, (10)
sets of hilly structure. The hilly structure of the Lyapunov m
exponentx exhibits gentle ups and downs over the range of _ ) )
values ofa, while the amplitudeF displays very sharp ups for the golden values d. While we have found this relation

and downs. The most important difference appears in th8Y confining our consideration to these golden values, it
valleys of the hilly structure: The value &fdecays linearly ~Should be noted that a relation similar to E€0) is expected

to 0 in each valley, but the value afin each valley seems to hold for all values of except in very narrow regions, due

to remain on the same order as that assumed at the top of tif2 the gentleness of the hilly structure ®f Also note that
nearest hill. However, we will later show that the valuea.of Ed- (10) in some sense describes the envelope of the
in fact also decay to 0. Decaying will be found to occur only (2:K) parameter space, as it does not include the periodic

in a very narrow region o around the minimum point in  dépendence om or the fine peak structure of. _
each valley. Equation(10) indicates that when there is an interaction

The regions in which the value of is close to zero are between elementé.e., K#0) the collective motion is al-

sufficiently narrow that we can ignore them in estimating theV&ys chaotic. Thus collective motion displaying quasiperiod-

order of the Lyapunov exponent as a function ofa. For  ICity, @s is seen in Fig. (&), is concluded to actually be
fixed values ofK the value of the Lyapunov exponeht chaotic. As the coupling strength approaches 0 or the pa-

decays asa becomes large. With the definiom=  rametera approaches 2i.e., m—x), the Lyapunov expo-
—log, (2—a), this decaying tendency is estimated as nent\ for the collective motion vanishes asymptotically.
a ’
)\~m’1, 9 VIIl. LYAPUNOV EXPONENTS AROUND DISAPPEARING

- ) POINTS OF THE COLLECTIVE MOTION
for positive values oK. In Sec. VII, we discuss the excep-

tional regions ofa (i.e., those in which this relationship does ~ The scaling relation for the Lyapunov exponent Eq.
not hold. (10), leads us to conclude that the collective motion is al-

ways chaotic. However, there do exist exceptional cases in
VII. SCALING RELATION which the coIIecti\{e.motion djsap_pears. In particular, it d.is—
OF THE LYAPUNOV EXPONENT appears at the minimum points in each valley of the hilly
structure of the amplitudE. Around these minimum points,

In this section, we discuss the relation of the exponent the Lyapunov exponent for the collective motion is expected
with the coupling strengtK. The value ofiis confined to be to decay to vanishing or negative values. However, it is dif-
one of the golden values, while the value Kfis changed. ficult to detect this behavior in Fig. 3. We now investigate in
Here a golden value, say,, is a value ofa such that one detail the nature of the Lyapunov exponent around the mini-
isolated tent map possesses the property that a trajectory bewum points. “Silver values” ofa are situated at the mini-
ginning at the pealC of the tent map returns t€ afterp  mum points in the valleys. The definition of silver values is
steps. There exists a sequence of such golden values, paraas- follows: Whena is identical tos,, isolated tent maps
etrized byp. As shown in Fig. 4, it is confirmed that the possess the property that a trajectory beginning fals into
collective motion becomes increasingly chaotic as the valua fixed point of the tent map aftgrsteps.
of K increases. For all the golden values we considered, we Figure 5 shows the decaying behavior of the Lyapunov
have found that the Lyapunov exponentgrows with the  exponent around a silver valisy of the parametea. |Aa|
coupling strengthK according to the relation~K?. The represents the distance fraarto the silver values, . Figure
value of\ also obeys the relation E¢9). Thus we find that 5 displays a very narrow neighborhoodsyf. The value ofx
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becomes small ag\a| approaches 0. As reflected by this 1 r r r T r
figure, the Lyapunov exponent scales with the distdiad et
aS -5 W\*\
10 F e -
A~(—In|Aa])~ 23 (11 Moy
o 1 0-10 3 + +\t+ ]
. . 7 =) 3+
This relation shows that the Lyapunov exponent decays to 0 .
as the value oh approaches a silver value. The Lyapunov 15 et ]
exponent is nonpositive only at the silver value. There, the 10 N b
collective motion does not appear, so that chaotic nature of +~\+
this motion is never realized. What we wish to emphasize is -20 P
that A falls to zero in only avery narrow neighborhoodf 10 0 5 10 15 20 25 30
the silver valugsee Fig. )]. For all other values o, the 2
Lyapunov exponent is approximately given by EtQ). The 1/K

narrowness of the decaying region around each silver value FIG. 6. Scaling relation of the sizé, of the minimum structure
causes_the apparent smpothness of the Ly_apunov _exponentﬁﬁ] K: Here 5. vs 1K2? is shown for the golden valua=

a function ofa. The mOtI.On of the §ystem Is chaotic every- 04 [—log.(2—a)=3]. The vertical scale is logarithmic. The dot-
where, except at the minimum point of each valley, whergg jine indicatess ~exp(-K2).
collective motion does not exist. We now conclude that, ¢

whenever collective motion appeafise., F#0), it is cha- 1
otic. F~ex;{ )

K| (13
IX. MINIMUM STRUCTURE OF THE COLLECTIVE The scaling relations for both, andF are given by mono-
MOTION tonically increasing functions df. Both sizes decay to O as
Let us now turn in our investigation of the Lyapunov K decre_ases. However, the rate at.which this degay occurs is
exponent for the collective motion to consideration of themuch different fors; and F. The sized; of the minimum
characteristic scale, that is, the scaleat which the expo- Structure becomes much smaller than the amplittidé the
nential growth of3, saturategsee Fig. 2 The value ofs, is collective motion for sufficiently smfil[ values &€, while
determined numerically through the time averagesobver ~ they are comparable fd¢=1. The minimum structure and
an interval of sufficient length just after the saturation. Afterthe chaotic behavior within it belong to a collective set of
the saturation oB, , it may continue to increase very slowly, Pheénomena in theubmacroscopic scal&hey are properties
until it becomes comparable to the siEeof the collective chz_aractenzmg the sma_ller _scale of the collective motlo_n,
motion. We, however, can choose an appropriate interval fofhile the collective motion is a product of the macroscopic
obtaining a valid value of, through the time average ¢  nature of the distributiop,(X).
just after saturation.
Below the scale characterized I§y, the collective mo- X. LYAPUNOV EXPONENT AND THE MINIMUM
tion behaves chaotically corresponding to a linear instability STRUCTURE
of the collective motion. The structure characterizedbys For the golden values of the parametetthe size of the
of a scale at which the nonlinearity first appears in the COI'minimum structure is found to be strongly correlated with
lective motion. The chaotic behavior of the collective motion he value of the Lyapunov exponextfor the collective mo-
is confined in this structure. We hereafter call the structure ok.
the collective motion characterized By the minimum struc-
ture. We determined an expression for the characteristic 1
scaleé, of the minimum structures, was found to depend 5C~exp< - X)' (19
on the value oK according to a certain scaling relation. As
is seen in Fig. 6, for sufficiently small values &f, &,

behaves as This relation is obtained through the substitution of Ef)

into Eq. (12). We conjecture that this relation is not mere

coincidence(i.e., its validity is not confined to the golden
(12)  Values but holds for all sets ofg,K). The characteristic size

é. corresponding to the chaotic behavior should naturally be
o _ . related to the Lyapunov exponent. This conjecture has been
This figure was obtained at a particular golden valueaof confirmed through numerical comparison of and
while the rE|at|0n(12) was 'Conf”med at 'eV?ry gOIden value _(|oga 5(:)_1_ In F|g 7 we show that these two values de-
we considered. The relation in E@L2) indicates that the pend onain a very similar manner, although the values of
minimum structure exists however small the Coupl|ng_(|oga5(:)71 are more Scattered than thosemee thus

1
5C"’GX — KZ .

strengthK is. _ o conclude that the relation
Let us now compare the sizg of the minimum structure
with that of the collective motion. The amplitude of the S.=a Y2 (15)

collective motion explored if9] obeys a different type of
scaling relation, is valid for any set of ,K).
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FIG. 8. Locking phenomenon of the collective motion aat
=g, [—log,(2—a)=3] andK=0.5, for the return map dfi,. In
the blowups, fluctuations are found around each locked point. The
extent of the fluctuations is comparable to the ségeof the mini-
mum structure at a corresponding set of parametis ).

FIG. 7. Relation between the Lyapunov expongrénd the size
& of the minimum structure. Hena= —log,(2—a). This figure is
for the cas&K =0.5.(a) The Lyapunov exponernt for the collective
motion. (b) \'=(—2log,8,) 1, whered; is the size of the mini-
mum structurgalso see Fig. 2 We find good correspondence be-
tween(a) and (b).

the collective motion locks to some periodic states, as is seen
in Fig. 8. Each periodic point possesses a region which is
subject to strong fluctuations as is shown in the blowups. The
extent of these fluctuations seems to be comparable to the
scaleé, of the minimum structure. When, as in Fig. 1, the
collective motion does not lock to periodic states, the struc-
n’é)ure corresponding t@, is similar to the case of the locked

. - . eriodic states. As is typically observésee Fig. 1b)], the

A remains positive except at the silver valuesaofccord- - j10ctive motion fluctu)gt)es a¥ound some qugsiperiodic mo-

ingly, the minimum structure exists for a'”!OSt all se_ts Oftion. The scale of these chaotic fluctuations seems to be on
(a,K), where it becomes small as the chaotic properties bethe same order as the value &f

come weak. When the coupling strengtrapproaches 0, the - a¢centing the correspondence between the extent of the
values of the Lyapunov exponent was found to approach Qpaqic fluctuations and the size of the minimum structure,
with the relation in Eq(10). Corresponding to this, the size \ e can interpret the observed collective motion in terms of
d. of the minimum structure also decreases to 0 with @ mucly,e macroscopic properties of the collective motion and the
larger decreasing rate with, as was described in EqL2).  ninimum structure. K=1, 6, is comparable to the size

At the silver values ofa, the minimum structure does not o he collective motion. In this case the collective motion

exist (6.=0), because the collective motion disappears apecomes fully developed chaotic motidsee Fig. b)].
these points. The value af at these points was numerically \yhen K<1, the sizes, of the minimum structure becomes
found to be 0, which is consistent with the nonexistence of,,,ch smaller than the siZe of the collective motion. Here,
the minimum structure &=0). The relation in Eq(15 i is possible for the collective motion to approach a form
indicates furthermore that the siZg of the minimum struc-  gimjlar to that displayed by a low-dimensional system, as in
ture also exhibits hilly structure as a functionapflike A and  he case of the quasiperiodic motion depicted in Fig).1
F. In fact, the hilly structure ofé; has been numerically oyr results imply that it is not possible for the system to
generated. However, because the valuescofound in this  realize quasiperiodic behavior which lacks chaotic fluctua-
study are widely scattered, the functional dependencé; of tjons. Whenever the collective motion appears, it is always
ona was not made completely clear. o accompanied by chaotic fluctuations. It is important that
It was concluded that the collective motion is almost al-these chaotic fluctuations are confined within the submacro-
ways chaotic even though it appears quasiperiodic. We noWcopic scale whenever they appear. The collective motion
obtain a second conclusion from the relation in Bp) that  goes not realize true quasiperiodic behavior, however it re-
the chaotic behavior is always confined in a submacroscopigyces to a form which appears to be quasiperiodic due to the
scale given by Eq(15). If the coupling strengttK is suffi-  confinement of the chaotic fluctuations within the submacro-
ciently small, the chaotic behavior is observed only in ascopic scale. As a result, the quasiperiodic behavior of the
much smaller scale than the scale of the collective motionggjjective motion becomes conspicuous, especially for small
We argue in a following section that this confinement of theyajyes ofK, where the characteristic scales of the collective
chaotic behavior leads to the low-dimensional appearance @¢figtion and the minimum structure are very different.

The relation in Eq.(15) implies some properties of the

the collective motion. We now make a conjecture to answer the question of why
the collective motion appears low dimensional despite the
XI. CHAOTIC ELUCTUATIONS actual high dimensionality of the dynamics. Recall now that

IN THE COLLECTIVE MOTION the collective motion results from dynamics of infinitely high

dimension. This is because the present mé#efs. (4) and
The minimum structure is related to a certain observed5)] consists of an infinite number of interacting chaotic el-
structure in the collective motion. Consider first the case thaéments without any mechanism to reduce the number of the
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delicate dynamical property for the macroscopic behavior
[Fig. Ab)].

As is seen in the above examples, the macroscopic motion
can become complicated, in some cases possessing fine
structure, such as a kind of hierarchical structure. We here
emphasize that, without regard to the dynamical properties of
the macroscopic scale, the minimum structure inevitably ex-
ists along with the macroscopic behavior of the collective
motion. For all patterns of the macroscopic behavior, the
chaotic behavior only remains below the submacroscopic
scale. In this scale the dynamical properties of the macro-
scopic behavior are destroyed, whereas the chaotic properties
in the submacroscopic scale do not seem to affect the collec-
tive behavior in the macroscopic scale. The appearance of
the minimum structure marks the disappearance of the de-
tailed structure of the macroscopic behavior. The existence
of the submacroscopic scale reminds us of the Kolmogorov
scale in turbulence, where the structure of the energy cascade
is destroyed by the mechanism of thermal dissipation.

FIG. 9. Examples of collective motion. Heee=g, [ —l0g,(2
—a)=3]. Each figure is for the return map bf,. (a) K=0.501.
Each periodic point in Fig. 8 becomes a torus due to the instability
of the locked point. For a slightly larger value kf these small tori
exhibit period locking again(b) K=0.507. The locked state is not
stable here. A kind of delicate structure is observed, reflecting th
stability of the macroscopic dynamics. Points are seen to be scal 0
tered when a pattern is observed at a sufficiently small scale. Thei:)tei?1
fluctuations appear even after a transient behavior has disappear

Xlll. SUMMARY AND DISCUSSION

In this paper we discussed the collective motion of glo-
bally coupled tent maps from the viewpoint of the dynamical
roperties of the distribution. We defined the Lyapunov ex-
nent for the collective motion from the growth of a distur-
nce in the distributiop,(X) through projection on the
order parameteh,,. The values obtained for the Lyapunov
.exponent are nontrivial in the sense that they cannot be in-
fluctuations in the submacroscopic scale constitute chaoti‘ferred from the dynarr_ncal properties of one tent map. It was

found that the collective motion is chaotic whenever it ap-

bmeehna':wo(;r tﬁ;I?1?nr;tf}(jli}:nzlr?;o?;?ecnhsalgg. v?itjrﬁnt(ihtgesﬁk?:"gl?{) pears, even though it seems to be periodic or quasiperiodic.
. 9 ; ; .~ The chaotic behavior of the collective motion seems to exist
scopic scale, the co!lectlvg motion reduces to a form Wh'cqnside the minimum structure of the collective motion, where
appears o be low-dimensional. disturbances grow exponentially. This minimum structure
persists for any collective motion with chaotic behavior and
its size can be estimated from the value of the Lyapunov
exponent. These results suggest the reason that the collective

) ) o motion exhibits low-dimensional behavior despite the actual
We now use a ternmacroscopic behaviodefinitely for  high dimensionality.

the coarse-grained behavior of the collective motion below “|; is necessary to explain how the minimum structure
the submacroscopic scale, i.e., below the scalé.0bf the  ¢ome into existence. The scaling relations for the gizef
minimum structure. Macroscopic behavior was observed t@ne minimum structure, E412), and the Lyapunov exponent
exhibit low-dimensional motion such as quasiperiodic andy for the collective motion, Eq(10), are similar to the forms
locked periodic m.otion. Wg now briefly diS(_:uss thg variety gptained analytically by Ershov and Potajd@]. They con-

of the macroscopic behavior for the collective motion. Thegjgered the size of the fluctuations and Lyapunov exponents
macroscopic behavior of the collective motion changes very,, globally coupled tent maps. Due to their abstruse analy-
frequently in the parameter space,K): typically the qua-  gjs "we are not sure if the fluctuations considered there are
siperiodic motion repeatedly locks to and releases from somgs|ated to the minimum structure discussed in this paper. We
periodic stategsee Fig. 8 Examples of the collective mo- peed a more intuitive explanation regarding the occurrence

tion are displayed in Fig. 9. The locking phenomena of theyt the chaotic fluctuations and their confinement within the
collective motion are often followed by the instability of the minimum structure.

locked points. We find an assembly of tori, as in Figa)9
These tori can also become locked, where each torus in the
assembly turns into locked states so that an assembly of the
locked periodic states is formed. In such a way, a kind of
hierarchical structure of locked states can be realized when This research was partially supported by JSPS. The mul-
the creation of tori, resulting from the destabilization of pe-tiple precision floating point computation package made by
riodic points, is repeated again and again, leading to the forD. H. Bailey at NASA Ames was used in a part of our
mation of assemblies of tori. When the collective motionnumerical computations. The authors also thank T. Shibata
does not lock, it comes to possess fine structure reflecting f@r communication.

Xll. MACROSCOPIC BEHAVIOR VERSUS
CHAOTIC FLUCTUATIONS
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