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Confined chaotic behavior in collective motion for populations
of globally coupled chaotic elements
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The Lyapunov exponent for collective motion is defined in order to characterize chaotic properties of
collective motion for large populations of chaotic elements. Numerical computations for this quantity suggest
that such collective motion is always chaotic, whenever it appears. Chaotic behavior of collective motion is
found to be confined within a small scale, whose size is estimated using the value of the Lyapunov exponent.
Finally, we conjecture why the collective motion appears low dimensional despite the actual high dimension-
ality of the dynamics.@S1063-651X~99!06802-6#
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I. INTRODUCTION

Systems consisting of large populations of interacting
namical elements are widely distributed in nature, from co
munities of ants to biological cell assemblies and neural n
works. Many such populations are similar in the respect t
they exhibit various kinds of collective behavior. One po
sible approach to the mathematical study of such collec
behavior is to concentrate on certain idealized models s
as interacting limit cycles and chaotic maps. An abunda
of literature has been devoted to the study of these mo
@1–6#. It was suggested in some foregoing studies@6–8# that
a population of this type as a whole exhibits low-dimensio
behavior. This seems to be true even when the individ
elements appear to be mutually uncorrelated, a situatio
which the population could only be regarded as a dynam
system of extremely high dimension. It still remains uncle
whether such collective behavior could be understood
terms of low-dimensional dynamical systems.

In globally coupled tent maps, collective motion has be
understood partly from a macroscopic viewpoint@9,10#. In
these studies, the collective motion was discussed only w
regard to its size, without consideration of its detailed str
ture. Some beautiful relations regarding the macrosco
properties of the collective motion were explored and
phase diagram was proposed. These results, however, d
represent progress toward an understanding of collective
tion in terms of low-dimensional dynamical systems. In th
paper, we first focus on the dynamical properties of coll
tive motion. We define the Lyapunov exponent characte
ing this collective motion and then a special relation invo
ing this quantity is found. This relation suggests that
collective motion is always chaotic, whenever it appea
Furthermore, chaotic behavior in the collective motion
found to be confined within a small scale whose size is
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lated to the value of the Lyapunov exponent. Finally, on
basis of our numerical results, we conjecture an answe
the following question: Why does the collective motion a
pear low dimensional despite the actual high dimensiona
of the dynamics?

II. MODEL: GLOBALLY COUPLED TENT MAPS

As model systems, we have chosen globally coupled
maps, because these systems are particularly well suited
detailed numerical analysis: We can deal with an ideal lim
of infinitely large population.

Globally coupled maps~GCM! are given by an assembl
of N elements whose behavior is determined byN identical
maps with all-to-all coupling. The individual elements a
then under the influence of a common internal field wh
may be referred to as a mean field@5#. We assume that a
single isolated element evolves according toXn115 f (Xn),
wheren designates discrete time steps. Under the interac
through the mean fieldhn , the i th element is then assume
to evolve as

Xn11
~ i ! 5 f ~Xn

~ i !!1Khn , ~1!

whereK is the coupling strength. In this paper, we consid
the situation in whichf is a tent map:

f ~X!52auXu1
a21

2
, ~2!

and the mean fieldhn is defined as

hn[
1

N(
j 51

N

f ~Xn
~ j !!. ~3!

Thus, our system is characterized by the two parametea
and K in addition to the total number of elementsN. Each
tent map has a band-splitting pointa5A2 and we thus stipu-
late thata satisfiesA2,a,2. It is thereby ensured that th
population will never split into subpopulations. If the syste
sizeN is finite, this finiteness becomes the source of fluct
tions of the mean field. Such an effect may obscure p
ki
1675 ©1999 The American Physical Society
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collective motion. Thus we work with the limit of largeN. In
fact, we confirmed that finite size effects can be regarde
noise acting on the pure collective motion. ForN→`, the
population dynamics of GCM can be described by
Frobenius-Perron equation@11# for the distributionr(X):

rn11~X!5E d@X2 f ~X8!2Khn#rn~X8!dX8, ~4!

hn5E f ~X8!rn~X8!dX8. ~5!

We worked out a numerical scheme for the exact integra
of Eqs.~4! and~5! whose precision is limited only by round
off errors@12#. Numerical results in this paper were obtain
using only a single initial distribution, uniform over the in
terval @ f + f (0): f (0)#.

III. BRIEF REVIEW OF PREVIOUS STUDIES

We review here several results for collective motion
globally coupled tent maps. Previously, this system was
reported to show nontrivial behavior ofhn in contrast with
globally coupled logistic maps. Ershov and Potapov@13#
worked analytically on this system@with Eqs. ~4! and ~5!#,
and suggested that the size of the fluctuations ofhn is scaled
as exp(2K22). Contrary to the previous numerical sugge
tions, their conclusion implied that the system would exhi
nontrivial behavior even in vanishingly small values ofK. In
order to confirm it, more precise calculation was requir
Morita @12# reported a good numerical scheme for integ
tion of Eqs.~4! and~5!. Especially in the case of the globall
coupled tent maps, the integration becomes exact, and
precision is limited only by round-off errors. Using a simil
scheme, Nakagawa and Komatsu@9# found that the size of
the collective motion is scaled as exp(2K21) at special pa-
rameter values ofa which they called ‘‘golden values.’’ Al-
though the scaling form is different from that of Ershov a
Potapov, it also implies that the collective motion exists ev
in vanishingly small values ofK. They also reported that
phase diagram for the collective motion resembles that of
Arnold tongues, where each tongue is connected with
golden values ofa. Another analytical approach to the co
lective motion was introduced by Chawanya and Mor
@10#. Through the investigation of the stability for the fixe
point of hn , their theory shed light on the bifurcation of th
collective motion. Their results were almost consistent w
the numerical conclusion in@9#. Thus collective behavior for
the globally coupled tent maps is now fairly explored. Ho
ever, the dynamical nature of the collective motion is s
open, and thisis just the theme of present paper.

IV. GROWTH OF COMPLEXITY
IN COLLECTIVE MOTION

Collective motion can be observed by studying the d
namics of the order parameterhn given by Eq.~5!. Figures
1~a! and 1~b! are return maps for this order parameter. Th
we see that the fluctuations ofhn undergo quasiperiodic mo
tion for smallK, but for largerK they display more compli-
cated motion. Roughly speaking, larger values ofK generi-
as
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cally result in more complicated collective behavior over
values ofa.

In the case of smallK, the collective motion appears qua
siperiodic. Despite the familiar appearance of this collect
motion, we should discuss carefully the nature of these
namics, because the system has an infinitely high dimens
The chaotic structure on the torus seems to grow gradua
without an indication of bifurcation from quasiperiodic to th
chaotic behavior. It may be the case that the structure on
torus persists as long as there is a nonvanishing interac
In following sections, we focus on the chaotic properties
the collective motion.

V. EXPONENTIAL GROWTH OF DISTURBANCES

In order to characterize the dynamical properties of
collective motion, we wish to define a value similar to th
Lyapunov exponent to characterize the collective moti
We note that it is unfeasible to calculate convention
Lyapunov exponents based on the phase-space structu
the system, because our system is of an infinitely high
mension. However, what we wish to concentrate on is
the phase-space structure but the dynamical properties o
collective motion. Hence we attempt to define a quan
similar to the Lyapunov exponent to describe the dynam
of the collective motion.

We first add a small disturbance to the distributionrn(X)
at time stepn. The mean fieldhn is changed tohn

(d) as a
result. The difference between the disturbed and non
turbed mean fields,

d l[uhn1 l
~d! 2hn1 l u, ~6!

depends onl, the time lapsed since the application of th
disturbance. Without an interaction (K50) among the ele-
ments in the population, the distributionrn1 l

(d) (X) gradually
approaches that of the nondisturbed casern1 l(X). This is
because the two distributions should realize the same inv
ant measure of a single tent map. Thusd l→0 as l becomes
large. WhenKÞ0, collective motion generally occurs. W
expect that its dynamical properties can be represented
the behavior ofd l . If the collective motion is completely
quasiperiodic, the differenced l will remain on the same or-
der asd0 , while, if it is chaotic,d l will grow exponentially
with the increase ofl.

FIG. 1. Two types of collective motion ata5g5 @defined by
2 loga(22a)54# for the return map ofhn . ~a! For K50.1, we find
a torus representing quasiperiodic motion.~b! For K51.0, the re-
turn map displays more complicated toruslike motion, possibly
companied by fine structure.
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In numerical experiments,d l is estimated for one set o
parameters (a,K) as follows: The valueuhn1 l

(d) 2hn1 l u is cal-
culated from various initial distributions ofrn

(d)(X) with a
fixed small differenced0[uhn

(d)2hnu. The sample averag
over variousuhn1 l

(d) 2hn1 l u calculated in this way givesd l . In
our computations, this average was calculated from eithe
or 100 initial disturbed distributions. We point out here th
individual uhn1 l

(d) 2hn1 l u actually depends onl in a manner
similar to d l .

In Fig. 2, we display examples for the exponential grow
of the differenced l between the mean fields. The initial di
ferenced0 is fixed at as small as 10230. The differenced l
exhibits a clear dependence on the time stepl: d l grows
exponentially and finally saturates near a certain scale.
surprising that the exponential growth ofd l is observed for a
considerably large interval ofl. It is therefore possible to
define the exponentl which characterizes the exponenti
growth of d l . The exponentl corresponds to the initia
slope in Fig. 2. For values ofl at whichd l displays exponen-
tial growth, we can definel according to

l[
1

l
lnS d l

d0
D . ~7!

This exponent was found to be independent of the ini
disturbance of the distribution for sufficiently small values
d0 and sufficiently large values ofl. Hereafter, we call the
exponentl theLyapunov exponent for the collective motio.

In Fig. 2 we display three examples ofd l , where the
values ofK are 0.6, 0.8, and 1.0 while the value ofa is fixed
according to2 loga (22a)54. Larger values ofK result in
larger values ofl. The collective motion is concluded to b
of a chaotic nature in every case of Fig. 2. If we were
calculate conventional Lyapunov exponents based on
phase-space structure of this system, a maximal expo
with a value close to lna, the Lyapunov exponent for a
single tent map, would be obtained. We note that the valu
l is generally smaller than lna. In the case of Fig. 2, lna
50.48, which is larger than the values found forl ~for in-

FIG. 2. Exponential growth of the differenced l between the
order parametershn1 l

(d) andhn1 l . The vertical scale is logarithmic
Here a5g5 @2 loga(22a)54#, while K50.6, 0.8, and 1.0. All
points represent sample averages of 10 different initial distributi
rn

(d)(X) with a fixed differenced0510230.
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stance,l50.17 whenK51.0). This implies that the dynam
ics of the collective motion have different nature from that
the individual elements.

VI. HILLY STRUCTURE OF THE LYAPUNOV
EXPONENT

Figure 3 shows the Lyapunov exponentl for the collec-
tive motion as functions ofa @or, more precisely, as func
tions of m52 loga(22a)# at fixed values ofK. Here, hilly
structure is displayed by the Lyapunov exponentl, as seen
in Fig. 3~a!. For comparison, we display the hilly structu
corresponding tomacroscopic propertiesof the collective
motion in Fig. 3~b!. These macroscopic properties are rep
sented by the amplitudeF of the collective motion,

F[AŠ~hn2^hn&!2
‹. ~8!

Here ^ & represents a long time average. It is worth noti
that the peaks and valleys of these two sets of hilly struct
seem to be located at the same values ofa. For further detail
concerning the hilly structure ofF, see@9#. Two special se-
ries of parameter values ofa, the ‘‘golden’’ and ‘‘silver’’
values~see the following sections for their definition!, are
the key to understanding the hilly structure. Briefly, t

s

FIG. 3. Hilly structure as a function ofm for K51.0 (1) and
0.5 (3). Herem52 loga(22a). ~a! m vs Lyapunov exponentl.
In the inset, the same data are displayed on logarithmic scale
both axes. The dotted line indicatesl5m21. ~b! m vs amplitudeF
of collective motion. There are several hills and valleys whose
cations seem to correspond to those in~a!. Some of the golden
values ofa coincide with integer values ofm while some of the
silver values coincide with the minimum points of valleys ofF.
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1678 PRE 59NAOKO NAKAGAWA AND TERUHISA S. KOMATSU
golden values of the parametera are situated in the middle o
each hill and the silver values are at the minimum points
the valleys. The same situation is found in the case of
Lyapunov exponentl for the collective motion.

We now concentrate on the differences between these
sets of hilly structure. The hilly structure of the Lyapuno
exponentl exhibits gentle ups and downs over the range
values ofa, while the amplitudeF displays very sharp up
and downs. The most important difference appears in
valleys of the hilly structure: The value ofF decays linearly
to 0 in each valley, but the value ofl in each valley seems
to remain on the same order as that assumed at the top o
nearest hill. However, we will later show that the values ol
in fact also decay to 0. Decaying will be found to occur on
in a very narrow region ofa around the minimum point in
each valley.

The regions in which the value ofl is close to zero are
sufficiently narrow that we can ignore them in estimating
order of the Lyapunov exponentl as a function ofa. For
fixed values ofK the value of the Lyapunov exponentl
decays asa becomes large. With the definitionm[
2 loga (22a), this decaying tendency is estimated as

l;m21, ~9!

for positive values ofK. In Sec. VII, we discuss the excep
tional regions ofa ~i.e., those in which this relationship doe
not hold!.

VII. SCALING RELATION
OF THE LYAPUNOV EXPONENT

In this section, we discuss the relation of the exponenl
with the coupling strengthK. The value ofa is confined to be
one of the golden values, while the value ofK is changed.
Here a golden value, saygp , is a value ofa such that one
isolated tent map possesses the property that a trajector
ginning at the peakC of the tent map returns toC after p
steps. There exists a sequence of such golden values, pa
etrized byp. As shown in Fig. 4, it is confirmed that th
collective motion becomes increasingly chaotic as the va
of K increases. For all the golden values we considered,
have found that the Lyapunov exponentl grows with the
coupling strengthK according to the relationl;K2. The
value ofl also obeys the relation Eq.~9!. Thus we find that

FIG. 4. Scaling relation of the Lyapunov exponentl for the
collective motion withK. Herel vs K is shown for three golden
valuesgp , p53 –5.a5gp is equal to2 loga (22a)5p21. The
dotted line indicatesl5K2.
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the Lyapunov exponentl for the collective motion behave
as

l;
K2

m
, ~10!

for the golden values ofa. While we have found this relation
by confining our consideration to these golden values
should be noted that a relation similar to Eq.~10! is expected
to hold for all values ofa except in very narrow regions, du
to the gentleness of the hilly structure ofl. Also note that
Eq. ~10! in some sense describes the envelope ofl in the
(a,K) parameter space, as it does not include the perio
dependence onm or the fine peak structure ofl.

Equation~10! indicates that when there is an interactio
between elements~i.e., KÞ0) the collective motion is al-
ways chaotic. Thus collective motion displaying quasiperio
icity, as is seen in Fig. 1~a!, is concluded to actually be
chaotic. As the coupling strengthK approaches 0 or the pa
rametera approaches 2~i.e., m→`), the Lyapunov expo-
nentl for the collective motion vanishes asymptotically.

VIII. LYAPUNOV EXPONENTS AROUND DISAPPEARING
POINTS OF THE COLLECTIVE MOTION

The scaling relation for the Lyapunov exponentl, Eq.
~10!, leads us to conclude that the collective motion is
ways chaotic. However, there do exist exceptional case
which the collective motion disappears. In particular, it d
appears at the minimum points in each valley of the h
structure of the amplitudeF. Around these minimum points
the Lyapunov exponent for the collective motion is expec
to decay to vanishing or negative values. However, it is d
ficult to detect this behavior in Fig. 3. We now investigate
detail the nature of the Lyapunov exponent around the m
mum points. ‘‘Silver values’’ ofa are situated at the mini
mum points in the valleys. The definition of silver values
as follows: Whena is identical tosp , isolated tent maps
possess the property that a trajectory beginning atC falls into
a fixed point of the tent map afterp steps.

Figure 5 shows the decaying behavior of the Lyapun
exponent around a silver valuesp of the parametera. uDau
represents the distance froma to the silver valuesp . Figure
5 displays a very narrow neighborhood ofsp . The value ofl

FIG. 5. Decay of the Lyapunov exponentl for the collective
motion near a silver values751.81327 . . . . HereDa[a2s7 . K
50.7. ~a! 2 lnuDau vs l with logarithmic scales for both axes. Th
dotted line corresponds tol;(2 lnuDau)22/3. ~b! uDau vs l with
normal scales for both axes. The region wherel decays to 0 is
found to be very narrow whenl is plotted in this way.
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becomes small asuDau approaches 0. As reflected by th
figure, the Lyapunov exponent scales with the distanceuDau
as

l;~2 lnuDau!22/3. ~11!

This relation shows that the Lyapunov exponent decays
as the value ofa approaches a silver value. The Lyapun
exponent is nonpositive only at the silver value. There,
collective motion does not appear, so that chaotic natur
this motion is never realized. What we wish to emphasiz
that l falls to zero in only avery narrow neighborhoodof
the silver value@see Fig. 5~b!#. For all other values ofa, the
Lyapunov exponent is approximately given by Eq.~10!. The
narrowness of the decaying region around each silver v
causes the apparent smoothness of the Lyapunov expone
a function ofa. The motion of the system is chaotic ever
where, except at the minimum point of each valley, wh
collective motion does not exist. We now conclude th
whenever collective motion appears~i.e., FÞ0), it is cha-
otic.

IX. MINIMUM STRUCTURE OF THE COLLECTIVE
MOTION

Let us now turn in our investigation of the Lyapuno
exponent for the collective motion to consideration of t
characteristic scale, that is, the scaledc at which the expo-
nential growth ofd l saturates~see Fig. 2!. The value ofdc is
determined numerically through the time average ofd l over
an interval of sufficient length just after the saturation. Af
the saturation ofd l , it may continue to increase very slowly
until it becomes comparable to the sizeF of the collective
motion. We, however, can choose an appropriate interva
obtaining a valid value ofdc through the time average ofd l
just after saturation.

Below the scale characterized bydc , the collective mo-
tion behaves chaotically corresponding to a linear instab
of the collective motion. The structure characterized bydc is
of a scale at which the nonlinearity first appears in the c
lective motion. The chaotic behavior of the collective moti
is confined in this structure. We hereafter call the structure
the collective motion characterized bydc theminimum struc-
ture. We determined an expression for the characteri
scaledc of the minimum structure.dc was found to depend
on the value ofK according to a certain scaling relation. A
is seen in Fig. 6, for sufficiently small values ofK, dc
behaves as

dc;expS 2
1

K2D . ~12!

This figure was obtained at a particular golden value oa
while the relation~12! was confirmed at every golden valu
we considered. The relation in Eq.~12! indicates that the
minimum structure exists however small the coupli
strengthK is.

Let us now compare the sizedc of the minimum structure
with that of the collective motion. The amplitudeF of the
collective motion explored in@9# obeys a different type o
scaling relation,
0

e
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F;expS 2
1

K D . ~13!

The scaling relations for bothdc andF are given by mono-
tonically increasing functions ofK. Both sizes decay to 0 a
K decreases. However, the rate at which this decay occu
much different fordc and F. The sizedc of the minimum
structure becomes much smaller than the amplitudeF of the
collective motion for sufficiently small values ofK, while
they are comparable forK.1. The minimum structure and
the chaotic behavior within it belong to a collective set
phenomena in thesubmacroscopic scale: They are properties
characterizing the smaller scale of the collective motio
while the collective motion is a product of the macroscop
nature of the distributionrn(X).

X. LYAPUNOV EXPONENT AND THE MINIMUM
STRUCTURE

For the golden values of the parametera, the size of the
minimum structure is found to be strongly correlated w
the value of the Lyapunov exponentl for the collective mo-
tion:

dc;expS 2
1

l D . ~14!

This relation is obtained through the substitution of Eq.~10!
into Eq. ~12!. We conjecture that this relation is not me
coincidence~i.e., its validity is not confined to the golde
values! but holds for all sets of (a,K). The characteristic size
dc corresponding to the chaotic behavior should naturally
related to the Lyapunov exponent. This conjecture has b
confirmed through numerical comparison ofl and
2(loga dc)

21. In Fig. 7 we show that these two values d
pend ona in a very similar manner, although the values
2(logadc)

21 are more scattered than those ofl. We thus
conclude that the relation

dc.a21/2l ~15!

is valid for any set of (a,K).

FIG. 6. Scaling relation of the sizedc of the minimum structure
with K. Here dc vs 1/K2 is shown for the golden valuea5
g4 @2 loga(22a)53#. The vertical scale is logarithmic. The do
ted line indicatesdc;exp(2K22).
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The relation in Eq.~15! implies some properties of th
minimum structure. As was argued, the Lyapunov expon
l remains positive except at the silver values ofa. Accord-
ingly, the minimum structure exists for almost all sets
(a,K), where it becomes small as the chaotic properties
come weak. When the coupling strengthK approaches 0, the
values of the Lyapunov exponent was found to approac
with the relation in Eq.~10!. Corresponding to this, the siz
dc of the minimum structure also decreases to 0 with a m
larger decreasing rate withK, as was described in Eq.~12!.
At the silver values ofa, the minimum structure does no
exist (dc50), because the collective motion disappears
these points. The value ofl at these points was numerical
found to be 0, which is consistent with the nonexistence
the minimum structure (dc50). The relation in Eq.~15!
indicates furthermore that the sizedc of the minimum struc-
ture also exhibits hilly structure as a function ofa, like l and
F. In fact, the hilly structure ofdc has been numerically
generated. However, because the values ofdc found in this
study are widely scattered, the functional dependence odc
on a was not made completely clear.

It was concluded that the collective motion is almost
ways chaotic even though it appears quasiperiodic. We n
obtain a second conclusion from the relation in Eq.~15! that
the chaotic behavior is always confined in a submacrosc
scale given by Eq.~15!. If the coupling strengthK is suffi-
ciently small, the chaotic behavior is observed only in
much smaller scale than the scale of the collective mot
We argue in a following section that this confinement of t
chaotic behavior leads to the low-dimensional appearanc
the collective motion.

XI. CHAOTIC FLUCTUATIONS
IN THE COLLECTIVE MOTION

The minimum structure is related to a certain observ
structure in the collective motion. Consider first the case t

FIG. 7. Relation between the Lyapunov exponentl and the size
dc of the minimum structure. Herem52 loga(22a). This figure is
for the caseK50.5.~a! The Lyapunov exponentl for the collective
motion. ~b! l8[(22logadc)

21, wheredc is the size of the mini-
mum structure~also see Fig. 2!. We find good correspondence b
tween~a! and ~b!.
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the collective motion locks to some periodic states, as is s
in Fig. 8. Each periodic point possesses a region which
subject to strong fluctuations as is shown in the blowups. T
extent of these fluctuations seems to be comparable to
scaledc of the minimum structure. When, as in Fig. 1, th
collective motion does not lock to periodic states, the str
ture corresponding todc is similar to the case of the locke
periodic states. As is typically observed@see Fig. 1~b!#, the
collective motion fluctuates around some quasiperiodic m
tion. The scale of these chaotic fluctuations seems to be
the same order as the value ofdc .

Accepting the correspondence between the extent of
chaotic fluctuations and the size of the minimum structu
we can interpret the observed collective motion in terms
the macroscopic properties of the collective motion and
minimum structure. IfK>1, dc is comparable to the sizeF
of the collective motion. In this case the collective motio
becomes fully developed chaotic motion@see Fig. 1~b!#.
WhenK!1, the sizedc of the minimum structure become
much smaller than the sizeF of the collective motion. Here
it is possible for the collective motion to approach a for
similar to that displayed by a low-dimensional system, as
the case of the quasiperiodic motion depicted in Fig. 1~a!.
Our results imply that it is not possible for the system
realize quasiperiodic behavior which lacks chaotic fluctu
tions. Whenever the collective motion appears, it is alwa
accompanied by chaotic fluctuations. It is important th
these chaotic fluctuations are confined within the subma
scopic scale whenever they appear. The collective mo
does not realize true quasiperiodic behavior, however it
duces to a form which appears to be quasiperiodic due to
confinement of the chaotic fluctuations within the submac
scopic scale. As a result, the quasiperiodic behavior of
collective motion becomes conspicuous, especially for sm
values ofK, where the characteristic scales of the collect
motion and the minimum structure are very different.

We now make a conjecture to answer the question of w
the collective motion appears low dimensional despite
actual high dimensionality of the dynamics. Recall now th
the collective motion results from dynamics of infinitely hig
dimension. This is because the present model@Eqs. ~4! and
~5!# consists of an infinite number of interacting chaotic
ements without any mechanism to reduce the number of

FIG. 8. Locking phenomenon of the collective motion ata
5g4 @2 loga(22a)53# andK50.5, for the return map ofhn . In
the blowups, fluctuations are found around each locked point.
extent of the fluctuations is comparable to the sizedc of the mini-
mum structure at a corresponding set of parameters (a,K).
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degrees of freedom. It is natural to imagine that the cha
fluctuations in the submacroscopic scale constitute cha
behavior of infinitely high dimension. Due to the confin
ment of the high-dimensional chaos within the submac
scopic scale, the collective motion reduces to a form wh
appears to be low-dimensional.

XII. MACROSCOPIC BEHAVIOR VERSUS
CHAOTIC FLUCTUATIONS

We now use a termmacroscopic behaviordefinitely for
the coarse-grained behavior of the collective motion be
the submacroscopic scale, i.e., below the scale ofdc of the
minimum structure. Macroscopic behavior was observed
exhibit low-dimensional motion such as quasiperiodic a
locked periodic motion. We now briefly discuss the varie
of the macroscopic behavior for the collective motion. T
macroscopic behavior of the collective motion changes v
frequently in the parameter space (a,K): typically the qua-
siperiodic motion repeatedly locks to and releases from so
periodic states~see Fig. 8!. Examples of the collective mo
tion are displayed in Fig. 9. The locking phenomena of
collective motion are often followed by the instability of th
locked points. We find an assembly of tori, as in Fig. 9~a!.
These tori can also become locked, where each torus in
assembly turns into locked states so that an assembly o
locked periodic states is formed. In such a way, a kind
hierarchical structure of locked states can be realized w
the creation of tori, resulting from the destabilization of p
riodic points, is repeated again and again, leading to the
mation of assemblies of tori. When the collective moti
does not lock, it comes to possess fine structure reflectin

FIG. 9. Examples of collective motion. Herea5g4 @2 loga(2
2a)53#. Each figure is for the return map ofhn . ~a! K50.501.
Each periodic point in Fig. 8 becomes a torus due to the instab
of the locked point. For a slightly larger value ofK, these small tori
exhibit period locking again.~b! K50.507. The locked state is no
stable here. A kind of delicate structure is observed, reflecting
stability of the macroscopic dynamics. Points are seen to be s
tered when a pattern is observed at a sufficiently small scale. T
fluctuations appear even after a transient behavior has disappe
ic
tic
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delicate dynamical property for the macroscopic behav
@Fig. 9~b!#.

As is seen in the above examples, the macroscopic mo
can become complicated, in some cases possessing
structure, such as a kind of hierarchical structure. We h
emphasize that, without regard to the dynamical propertie
the macroscopic scale, the minimum structure inevitably
ists along with the macroscopic behavior of the collect
motion. For all patterns of the macroscopic behavior,
chaotic behavior only remains below the submacrosco
scale. In this scale the dynamical properties of the mac
scopic behavior are destroyed, whereas the chaotic prope
in the submacroscopic scale do not seem to affect the co
tive behavior in the macroscopic scale. The appearanc
the minimum structure marks the disappearance of the
tailed structure of the macroscopic behavior. The existe
of the submacroscopic scale reminds us of the Kolmogo
scale in turbulence, where the structure of the energy cas
is destroyed by the mechanism of thermal dissipation.

XIII. SUMMARY AND DISCUSSION

In this paper we discussed the collective motion of g
bally coupled tent maps from the viewpoint of the dynamic
properties of the distribution. We defined the Lyapunov e
ponent for the collective motion from the growth of a distu
bance in the distributionrn(X) through projection on the
order parameterhn . The values obtained for the Lyapuno
exponent are nontrivial in the sense that they cannot be
ferred from the dynamical properties of one tent map. It w
found that the collective motion is chaotic whenever it a
pears, even though it seems to be periodic or quasiperio
The chaotic behavior of the collective motion seems to e
inside the minimum structure of the collective motion, whe
disturbances grow exponentially. This minimum structu
persists for any collective motion with chaotic behavior a
its size can be estimated from the value of the Lyapun
exponent. These results suggest the reason that the colle
motion exhibits low-dimensional behavior despite the act
high dimensionality.

It is necessary to explain how the minimum structu
come into existence. The scaling relations for the sizedc of
the minimum structure, Eq.~12!, and the Lyapunov exponen
l for the collective motion, Eq.~10!, are similar to the forms
obtained analytically by Ershov and Potapov@13#. They con-
sidered the size of the fluctuations and Lyapunov expone
for globally coupled tent maps. Due to their abstruse ana
sis, we are not sure if the fluctuations considered there
related to the minimum structure discussed in this paper.
need a more intuitive explanation regarding the occurre
of the chaotic fluctuations and their confinement within t
minimum structure.
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